## Linear Algebra I

08/04/2016, Friday, 18:30-21:30

You are NOT allowed to use any type of calculators.
$1 \quad(2+8+5=15 \mathrm{pts}) \quad$ Linear systems of equations

Consider the system of equations

$$
\left[\begin{array}{llll}
0 & 0 & 3 & 6 \\
0 & 0 & 1 & 2 \\
0 & 2 & 4 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
8
\end{array}\right] .
$$

a. Write down the augmented matrix.
b. Determine all values of $a$ and $b$ for which the system is consistent.
c. Take $a=b=3$ and find all solutions.

REQUIRED KNOWLEDGE: Gauss-elimination, row operations, (reduced) row echelon form.

## Solution:

1a: The augmented matrix is given by:

$$
\left[\begin{array}{cccccc}
0 & 0 & 3 & 6 & \vdots & a \\
0 & 0 & 1 & 2 & \vdots & b \\
0 & 2 & 4 & 6 & \vdots & 8
\end{array}\right]
$$

1b: By applying row operations, we obtain:

Therefore, the system is consistent if and only if $a=3 b$.
1c: There are no solutions as $a \neq 3 b$ for $a=b=3$.

Let $A$ and $B$ be $n \times n$ matrices. Show that

$$
\operatorname{det}\left(\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\right)=\operatorname{det}(A+B) \operatorname{det}(A-B)
$$

REQUIRED KNOWLEDGE: Determinant, partitioned matrices

## SOLUTION:

Note that

$$
\left[\begin{array}{cc}
I_{n} & 0_{n, n} \\
-I_{n} & I_{n}
\end{array}\right]\left[\begin{array}{cc}
A & B \\
B & A
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
B-A & A-B
\end{array}\right]
$$

and that

$$
\begin{aligned}
{\left[\begin{array}{cc}
I_{n} & 0_{n, n} \\
-I_{n} & I_{n}
\end{array}\right]\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0_{n, n} \\
I_{n} & I_{n}
\end{array}\right] } & =\left[\begin{array}{cc}
A & B \\
B-A & A-B
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0_{n, n} \\
I_{n} & I_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A+B & B \\
0_{n, n} & A-B
\end{array}\right]
\end{aligned}
$$

Therefore, we have

$$
\operatorname{det}\left(\left[\begin{array}{cc}
I_{n} & 0_{n, n} \\
-I_{n} & I_{n}
\end{array}\right]\right) \operatorname{det}\left(\left[\begin{array}{cc}
A & B \\
B & A
\end{array}\right]\right) \operatorname{det}\left(\left[\begin{array}{cc}
I_{n} & 0_{n, n} \\
I_{n} & I_{n}
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
A+B & B \\
0_{n, n} & A-B
\end{array}\right]\right)
$$

This leads to

$$
\operatorname{det}\left(\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
A+B & B \\
0_{n, n} & A-B
\end{array}\right]\right)
$$

since $\operatorname{det}\left(\left[\begin{array}{cc}I_{n} & 0_{n, n} \\ -I_{n} & I_{n}\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}I_{n} & 0_{n, n} \\ I_{n} & I_{n}\end{array}\right]\right)=1$. Note that

$$
\operatorname{det}\left(\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\right)=\operatorname{det}(A+B) \operatorname{det}(A-B)
$$

Consider the vector space $P_{3}$.
a. Are the vectors $x, x^{2}+1,(x+1)^{2}$ linearly independent?
b. Is the set

$$
\left\{p(x) \in P_{3} \mid p(2)=1\right\}
$$

a subspace of $P_{3}$ ? Justify your answer.
c. Is the set

$$
\left\{p(x) \in P_{3} \mid p(2)=0\right\}
$$

a subspace of $P_{3}$ ? If so, find its dimension.
d. Let $L: P_{3} \rightarrow P_{3}$ be given by

$$
L(p(x))=p(1) x+p(2)
$$

Is $L$ a linear transformation? If so, find its matrix representation with respect to the basis $\left\{1, x, x^{2}\right\}$.

REQUIRED KNOWLEDGE: Vector space, subspace, linear independence, basis, dimension, linear transformation.

## Solution:

3a: Let $a, b, c$ be scalars such that

$$
a x+b\left(x^{2}+1\right)+c(x+1)^{2}=0
$$

Then, we get

$$
(b+c) x^{2}+(a+2 c) x+b+c=0
$$

This leads to

$$
\begin{aligned}
b+c & =0 \\
a+2 c & =0 \\
b+c & =0 .
\end{aligned}
$$

Note that

$$
a=2 \quad b=1 \quad c=-1
$$

is a solution for the equations above. As such, the vectors $x, x^{2}+1,(x+1)^{2}$ are not linearly independent.

3b: Let

$$
S:=\left\{p(x) \in P_{3} \mid p(2)=1\right\} .
$$

Notice that the zero polynomial does not belong to this set. As such, it cannot be a subspace. Alternative ways to see this include:

- Let $p(x) \in S$ and define $q(x)=2 p(x)$. Note that $q(2)=2 \cdot 1=2$. Then, $q(x) \notin S$.
- Let $p(x), q(x) \in S$. Define $r(x)=p(x)+q(x)$. Note that $r(2)=p(2)+q(2)=1+1=2$. Thus, $r(x) \notin S$.

3c: Let

$$
S:=\left\{p(x) \in P_{3} \mid p(2)=0\right\}
$$

As it contains the zero polynomial, $S$ is non-empty. Let

$$
p(x) \in S
$$

and $\alpha$ be a scalar. This means that

$$
p(2)=0
$$

Note that

$$
(\alpha p)(2)=\alpha p(2)=0
$$

Hence, $(\alpha p)(x) \in S$. So, the set $S$ is closed under scalar multiplication. In order to show that it is closed under vector addition as well, let

$$
p(x), q(x) \in S
$$

Note that

$$
(p+q)(2)=p(2)+q(2)=0
$$

Therefore, $(p+q)(x) \in S$. Consequently, $S$ is a subspace.
To find its dimension, we need to find a basis for $S$. Let $p(x) \in S$ be the form

$$
p(x)=a x^{2}+b x+c
$$

It follows from $p(2)=0$ that

$$
4 a+2 b+c=0
$$

This leads to

$$
p(x)=a x^{2}+b x-(4 a-2 b)=a\left(x^{2}-4\right)+b(x-2) .
$$

Note that $x^{2}-4$ and $x-2$ are linearly independent. This means that they form a basis for $S$. Hence, the dimension of $S$ is 2 .

3d: Note that

$$
L(\alpha p(x))=\alpha p(1) x+\alpha p(2)=\alpha(p(1) x+p(2))=\alpha L(p(x))
$$

and

$$
L(p(x)+q(x))=(p(1)+q(1)) x+(p(2)+q(2))=p(1) x+p(2)+q(1) x+q(2)=L(p(x))+L(q(x))
$$

Therefore, $L$ is a linear transformation.
In order to find the matrix representation, we first apply $L$ to the basis vector:

$$
\begin{aligned}
L(1) & =x+1=1 \cdot 1+1 \cdot x+0 \cdot x^{2} \\
L(x) & =x+2=2 \cdot 1+1 \cdot x+0 \cdot x^{2} \\
L\left(x^{2}\right) & =x+4=4 \cdot 1+1 \cdot x+0 \cdot x^{2}
\end{aligned}
$$

This results in the following matrix representation:

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Find the best parabola of the form $y=a x^{2}+b x+c$ fitting the points:

| $x$ | -2 | -1 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 2 | $\frac{1}{2}$ | $\frac{3}{2}$ | 2 |

REQUIRED KNOWLEDGE: Least squares problem, normal equations.

## Solution:

We can formulate the following least squares problem by using the given data:

$$
\left[\begin{array}{rrr}
4 & -2 & 1 \\
1 & -1 & 1 \\
1 & 1 & 1 \\
4 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
2 \\
\frac{1}{2} \\
\frac{3}{2} \\
2
\end{array}\right]
$$

The normal equations for this least squares problem are given by

$$
A^{T} A x=A^{T} b
$$

where

$$
A=\left[\begin{array}{rrr}
4 & -2 & 1 \\
1 & -1 & 1 \\
1 & 1 & 1 \\
4 & 2 & 1
\end{array}\right] \quad b=\left[\begin{array}{c}
2 \\
\frac{1}{2} \\
\frac{3}{2} \\
2
\end{array}\right]
$$

Note that

$$
A^{T} A=\left[\begin{array}{rrrr}
4 & 1 & 1 & 4 \\
-2 & -1 & 1 & 2 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
4 & -2 & 1 \\
1 & -1 & 1 \\
1 & 1 & 1 \\
4 & 2 & 1
\end{array}\right]=\left[\begin{array}{ccc}
34 & 0 & 10 \\
0 & 10 & 0 \\
10 & 0 & 4
\end{array}\right] \quad A^{T} b=\left[\begin{array}{rrrr}
4 & 1 & 1 & 4 \\
-2 & -1 & 1 & 2 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
\frac{1}{2} \\
\frac{3}{2} \\
2
\end{array}\right]=\left[\begin{array}{c}
18 \\
1 \\
6
\end{array}\right]
$$

Then, we can find the inverse of $A^{T} A$ as

$$
\left(A^{T} A\right)^{-1}=\left[\begin{array}{ccc}
\frac{1}{9} & 0 & -\frac{5}{18} \\
0 & \frac{1}{10} & 0 \\
-\frac{5}{18} & 0 & \frac{17}{18}
\end{array}\right]
$$

This leads to

$$
x=\left[\begin{array}{ccc}
\frac{1}{9} & 0 & -\frac{5}{18} \\
0 & \frac{1}{10} & 0 \\
-\frac{5}{18} & 0 & \frac{17}{18}
\end{array}\right]\left[\begin{array}{c}
18 \\
1 \\
6
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{10} \\
\frac{2}{3}
\end{array}\right]
$$

Consider the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{array}\right]
$$

a. Find its eigenvalues.
b. Find its determinant. Is it nonsingular?
c. Is it diagonalizable? If so, find a nonsingular matrix $X$ such that $X^{-1} A X$ is diagonal.

## Required Knowledge: Eigenvalues, characteristic polynomial, diagonalization.

## Solution:

5a: Characteristic polynomial can be found as

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left[\begin{array}{ccc}
-\lambda & 1 & 2 \\
0 & 1-\lambda & 2 \\
0 & 1 & 2-\lambda
\end{array}\right] \\
& =-\lambda[(1-\lambda)(2-\lambda)-2]=-\lambda\left(\lambda^{2}-3 \lambda\right)=-\lambda^{2}(\lambda-3) .
\end{aligned}
$$

Therefore, the eigenvalues are $\lambda_{1}=\lambda_{2}=0$ and $\lambda_{3}=3$.
$\mathbf{5 b}$ : The determinant of a matrix is equal to the product of its eigenvalues. As such, it is zero. Hence, the matrix is singular.

5c: The matrix $A$ is diagonalizable if and only if it has 3 linearly independent eigenvectors.
For $\lambda_{1}=\lambda_{2}=0$, the eigenvectors can be found by solving the following homogeneous equations:

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{array}\right] x=0 .
$$

This would yield, for instance, the following two linearly independent eigenvectors:

$$
x_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \text { and } \quad x_{2}=\left[\begin{array}{r}
0 \\
-2 \\
1
\end{array}\right] .
$$

For $\lambda_{3}=3$, we need to solve the equation:

$$
\left[\begin{array}{rrr}
-3 & 1 & 2 \\
0 & -2 & 2 \\
0 & 1 & -1
\end{array}\right] x=0
$$

This would result in, for instance,

$$
x_{3}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] .
$$

As we have found three linearly independent eigenvectors, the matrix is diagonalizable. A diagonalizer $X$ can be given as

$$
X=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -2 & 1 \\
0 & 1 & 1
\end{array}\right] .
$$

Let $A, B$, and $C$ be $n \times n$ matrices. Denote the $n \times n$ zero matrix by $0_{n}$. Consider the matrix

$$
M=\left[\begin{array}{cc}
A & B \\
0_{n} & C
\end{array}\right] .
$$

a. Show that $M$ is nonsingular if both $A$ and $C$ are nonsingular.
b. Show that

$$
M^{-1}=\left[\begin{array}{cc}
A^{-1} & -A^{-1} B C^{-1} \\
0_{n} & C^{-1}
\end{array}\right]
$$

## REQUIRED KNOWLEDGE: Nonsingularity and partitioned matrices.

## Solution:

6a: Let $z$ be such that $M z=0$. Partition $z$ as

$$
z=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

where $x$ and $y$ are $n$-vectors. Now, we have

$$
0=M z=\left[\begin{array}{ll}
A & B \\
0_{n} & C
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
A x+B y \\
C y
\end{array}\right]
$$

It follows from $C y=0$ and the non singularity of $C$ that $y=0$. Therefore, we have $A x+B y=$ $A x=0$. Since $A$ is nonsingular, this can happen only if $x=0$. Since both $x$ and $y$ are zero, we get $z=0$. Therefore, $M$ is nonsingular.

6b: Note that

$$
\left[\begin{array}{cc}
A & B \\
0_{n} & C
\end{array}\right]\left[\begin{array}{cc}
A^{-1} & -A^{-1} B C^{-1} \\
0_{n} & C^{-1}
\end{array}\right]=\left[\begin{array}{cc}
A A^{-1}+B 0_{n} & -A A^{-1} B C^{-1}+B C^{-1} \\
0_{n} A^{-1}+C 0_{n} & -0_{n} A^{-1} B C^{-1}+C C^{-1}
\end{array}\right]=\left[\begin{array}{cc}
I_{n} & 0_{n} \\
0_{n} & I_{n}
\end{array}\right]=I_{2 n}
$$

where $I_{n}$ is the $n \times n$ identity matrix. Therefore, we can conclude that

$$
M^{-1}=\left[\begin{array}{cc}
A^{-1} & -A^{-1} B C^{-1} \\
0_{n} & C^{-1}
\end{array}\right]
$$

